GLC50 Commercial/GLM50 Medical 50 Watt Output Global Performance Switchers

SPECIFICATIONS:

Ac Input

90-264 Vac, 47-63 Hz single phase.

Input Current

Maximum input current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$ with full rated output load: 1.5 A

Hold-UpTime

15 ms minimum from loss of ac input at full load, nominal line (115 Vac).

Output Power

50 W continuous, 60 W peak. Peak ratings are for 60 s maximum duration, 10% duty cycle. During peak load condition, output regulation may exceed total regulation limits.

Output Regulation

To maintain specified regulation on multi-output models, output \#1 load power must be at least $1 / 5$ th of, and not greater than 5 times output \#2 load power.

Overload Protection

Fully protected against short circuit and output overload. Short circuit protection is cycling type power limit on outputs $1 \& 2$; foldback type on output 3 . Recovery after fault is automatic. See output ratings chart for additional notes or conditions.

Efficiency

$70-85 \%$ at full rated load, nominal input voltage, depending on model and load distribution.

Minimum Load

Operating without minimum load will not degrade reliability, but regulation may be affected. Multiple output models require 20% minimum load on V1 for proper regulation. Single models require 5% minimum load.

Input Protection

Internal ac fuse provided. Designed to blow only if a catastrophic failure occurs in the unit-fuse does not blow on overload or short circuit.

Inrush Current

Inrush is limited by internal thermistors. Inrush at 240 Vac , averaged over the first ac half-cycle under cold start conditions will not exceed 37 A.

FEATURES:

- Cost-effective power source
- Universal input 90-264 Vac
- 2-year warranty
- Compact (4.25 " x 2.50 " x 1.25 "; meets 1 U applications)
- Overload and overvoltage protection
- Conducted EMI exceeds FCC Class B and CISPR 22 Class B (Commercial models) and CISPR 11 Class B (Medical models)
- Commercial UL1950, CSA22.2 No. 950 and IEC 950, EN60950 approvals
- Medical UL2601, CSA22.2 No. 601, IEC601-1, EN60601-1
- C $€$ marked to LVD

Temperature Coefficient

$0.03 \% /{ }^{\circ} \mathrm{C}$ typical on all outputs.

Output Noise

$0.5 \% \mathrm{rms}, 1 \% \mathrm{pk}-\mathrm{pk}, 20 \mathrm{MHz}$ bandwidth, differential mode. Measured with noise probe directly across output terminals of the power supply.

Transient Response

$500 \mu \mathrm{~s}$ typical response time for return to within 0.5% of final value for a 50% load step change. $\Delta \mathrm{i} / \Delta \mathrm{t}<0.2 \mathrm{~A} / \mu \mathrm{s}$. Maximum voltage deviation is 3.5%. Startup/shutdown overshoot less than 3%.

Voltage Adjustment

Built-in potentiometer adjusts V1 $\pm 5 \%$.

EMI/EMC Compliance

All models include built-in EMI filtering to meet the following emissions requirements:
EMI SPECIFICATIONS COMPLIANCE LEVEL
Conducted Emissions GLC EN55022 Class B; FCC Class B
Conducted Emissions GLM EN55011 Class B; FCC Class B
Static Discharge RF Field Susceptibility Fast Transients/Bursts Surge Susceptibility EN61000-4-2, 6 kV contact, 8 kV air EN61000-4-3, 3 V/meter EN61000-4-4, $2 \mathrm{kV}, 5 \mathrm{kHz}$ EN61000-4-5, 1 kV diff., 2 kV com.

Commercial Leakage Current
$160 \mu \mathrm{~A} 254 \mathrm{Vac} @ 60 \mathrm{~Hz}$ input (with no deviations).
Commercial Safety
All GLC models are approved to UL1950, CSA22.2 No. 234 Level 3, IEC950 and EN60950.

Medical Leakage Current
$100 \mu \mathrm{~A} 264 \mathrm{Vac}$ @ 60 Hz input (normal conditions).
Medical Safety
All GLM models are approved to UL2601, CSA22.2 No. 601, IEC601-1 and EN60601-1.

GLC50 Commercial/GLM50 Medical 50 Watt Multiple Output

Commercial Model	Medical Model	Output No.	Output	Current	Minimum Load (B)	OVP Setpoint	Noise P-P	Total Regulation (A)
GLC50A	GLM50A	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & +5.05 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 4 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 0.2 \mathrm{~A} \end{array}$	0.8 A	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 120 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \\ 3 \% \end{gathered}$
GLC50B	GLM50B	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 4 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 0.2 \mathrm{~A} \end{array}$	0.8 A	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 150 \mathrm{mV} \\ 150 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \\ 3 \% \end{gathered}$
GLC50D	GLM50D	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & +5.1 \mathrm{~V} \\ & +24 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 1.5 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	0.8 A	$6.2 \pm 0.6 \mathrm{~V}$	$\begin{gathered} 50 \mathrm{mV} \\ 240 \mathrm{mV} \\ 120 \mathrm{mV} \end{gathered}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \\ 3 \% \end{gathered}$
GLC50G	GLM50G	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.3 \mathrm{~V} \\ & +12 \mathrm{~V} \\ & -12 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4 \mathrm{~A} \\ 2.5 \mathrm{~A} \\ 0.2 \mathrm{~A} \end{gathered}$	0.8 A	$4.2 \pm 0.6 \mathrm{~V}$	$\begin{aligned} & 33 \mathrm{mV} \\ & 120 \mathrm{mV} \\ & 120 \mathrm{mV} \end{aligned}$	$\begin{gathered} 2 \% \\ +10 \%,-5 \% \\ 3 \% \end{gathered}$
GLC50-3.3	GLM50-3.3	1	3.3 V	8 A	0	$4.2 \pm 0.6 \mathrm{~V}$	66 mV	2\%
GLC50-5	GLM50-5	1	5.1 V	8 A	0	$6.2 \pm 0.6 \mathrm{~V}$	75 mV	2\%
GLC50-12	GLM50-12	1	12 V	4.2 A	0	$14 \pm 1.1 \mathrm{~V}$	120 mV	2\%
GLC50-15	GLM50-15	1	15 V	3.3 A	0	$18.5 \pm 1.5 \mathrm{~V}$	150 mV	2\%
GLC50-24	GLM50-24	1	24 V	2.1 A	0	$28 \pm 2.5 \mathrm{~V}$	240 mV	2\%
GLC50-28	GLM50-28	1	28 V	1.8 A	0	$34.5 \pm 2.8 \mathrm{~V}$	280 mV	2\%
GLC50-48	GLM50-48	1	48 V	1.1 A	0	$54 \pm 3.0 \mathrm{~V}$	480 mV	2\%

A. Total regulation is defined as the maximum deviation from the nominal voltage for all steady-state conditions of initial voltage setting, input line voltage and output load.
B. To maintain specified regulation on multi-output models, output\#1 load power must be at least $1 / 5$ th of, and not greater than 5 times output \# 2 load power.

GLC50/GLM50 MECHANICAL SPECIFICATIONS

INPUT J1:
AMP P/N 640445-3, 0.156 CTR 0.045 SQUARE PIN HEADER PIN 3) AC NEUTRAL PIN 2) NO PIN PIN 1) AC LINE
OUTPUT J2:
AMP P/N 640445-6, 0.156 CTR 0.045 SQUARE PIN HEADER

MULTIPLE OUTPUT SINGLE OUTPUT PIN 1) OUTPUT \#2 PIN 1-3) OUTPUT PIN 2) OUTPUT \#1 PIN 4-6) RETURN PIN 3) OUTPUT \#1
PIN 4) COMMON
PIN 5) COMMON
PIN 6) OUTPUT \#3
MATING CONNECTORS: AMP P/N

	HOUSING	CONTACTS
INPUT	$640250-3$	$770476-1$
OUTPUT	$640250-6$	$770476-1$

NOTE: 5A MAXIMUM RECOMMENDED CURRENT PER CONNECTOR PIN
WEIGHT 5 OZ. [0.142 KG]
TOLERANCES:X.XX=0.030 [0.76mm] X.XXX $=0.010[0.25 \mathrm{~mm}]$

Environmental Specification	Operating	Non-operating
Temperature (A)	0 to $50^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
Humidity (A)	0 to $95 \% \mathrm{RH}$	0 to $95 \% \mathrm{RH}$
Shock (B)	$20 \mathrm{~g}_{\mathrm{pk}}$	$40 \mathrm{~g}_{\mathrm{pk}}$
Altitude	-500 to $10,000 \mathrm{ft}$	-500 to $40,000 \mathrm{ft}$
Vibration (C)	$1.5 \mathrm{~g}_{\mathrm{rms}}, 0.003 \mathrm{~g}^{2} / \mathrm{Hz}$	$5 \mathrm{~g}_{\mathrm{rms}}, 0.026 \mathrm{~g}^{2} / \mathrm{Hz}$

A. Units should be allowed to warm up/operate under non-condensing conditions before application of power. derate output current and total output power by 2.5% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$.
B. Random vibration- 10 to $2000 \mathrm{~Hz}, 6 \mathrm{~dB} /$ octave roll-off from 350 to $2000 \mathrm{~Hz}, 3$ orthogonal axes. Tested for 10 min ./axis operating and 1 hr ./axis non-operating.
C. Shock testing-half-sinusoidal, $10 \pm 3 \mathrm{~ms}$ duration, \pm direction, 3 orthogonal axes, total 6 shocks.

